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Abstract

This article describes the specification and analysis of the CiliPadi family of lightweight authen-
ticated encryption v1.2. An earlier version, dubbed v1.0, was accepted as one of the Round 1
candidates in the US NIST lightweight cryptography project. CiliPadi is designed based on the
Sponge construction which is also used in the SHA-3 hash function. CiliPadi supports 128- and
256-bit keys and is offered in four variants or flavours. The flavours differ in the length of tag,
message block and the number of rounds of the internal permutation.
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1 Introduction

Traditional encryption such as stream and block ciphers only assures confidentiality of data. To
additionally ensure integrity and authenticity, authenticated encryption (AE) schemes are used.
Such schemes can be built using the generic composition approach [3], i.e. by interweaving indi-
vidual encryption and message authentication code (MAC) schemes. The three generic composi-
tion approaches are: Encrypt-and-MAC, MAC-then-encrypt and Encrypt-then-MAC.

However, due to the intricate nature of securely combining these schemes, a dedicated primi-
tive that intrinsically provides confidentiality, integrity and authenticity is required. For instance,
Bellare and Namprempre [3] have shown that only Encrypt-then-MAC satisfies all the privacy
and integrity security notion when the underlying MAC is assumed to be strongly unforgeable.
Vaudenay [30] reports that when padding is performed in between encryption and the MAC op-
eration, the scheme is susceptible to attacks. Bellare, Kohno and Namprempre [2] find out that,
due to the use of predictable IVs in the AE scheme of the SSH protocol, an attacker is able to ob-
tain some information about previously encrypted messages. Paterson and Watson [26] show that
improper handling of padding in the generic composition approach results in an insecure scheme.

Early proposals that address this problem appear in the early 2000s. Examples include the
related plaintext chaining (RPC) by Katz and Yung [23] and the integrity aware CBC (IACBC) and
integrity aware paralellizability mode (IAPM) by Jutla [22]. Rogaway et al. [27] then introduces
the OCB mode, which enhances the IAPM. Gligor and Donescu [18] propose the XCBC and XECB
construction which make use of XOR to provide authentication of messages using a block cipher
in single-pass. These dedicated AE proposals are derived based on either a block cipher, or a
permutation called sponge [7].

The United States (US) National Institute of Standards and Technology (NIST) has been in-
fluential in shaping international cryptographic standards, and AE is no exception. In 2018, the
NIST issued a call-for-algorithms for the NIST lightweight cryptography (LwC) standardisation
project. The project specifically focuses on lightweight AE algorithms, i.e. algorithms that are suit-
able to be implemented in devices where resources such as area, memory and power, are limited.
Such resource-constrained devices typically include the Internet-of-Things (IoIs), which are cur-
rently gaining significant attention.

CiliPadi is a family of lightweight AE algorithms. An earlier version of CiliPadi [31], referred
to as v1.0, was submitted to the NIST LwC project on March 2019. It was accepted as one of
the 56 candidates in the Round 1 phase of the project. In August 2019, the Round 2 candidates
were announced and CiliPadi did not make the cut. This is due to a length extension attack
by Bagheri [1, 29]. This article describes an updated version of CiliPadi labelled as version 1.2
(v1.2). This updated version is resistant against the length-extension attack by including a proper
padding scheme for the inputs described later in Section 3.3.

CiliPadiis based on the MonkeyDuplex construction [5] which evolves from the original Sponge
proposed in 2007 [7]. The versatile Sponge construction has been extensively scrutinized and de-
ployed in numerous hash functions and AE proposals (e.g. Keccak [4], PHOTON [20], Fipgs [8]
and Ascon [16]. There are four main flavours of CiliPadi, i.e. CiliPadi-Mild, CiliPadi-Medium, CiliPadi-
Hot and CiliPadi-ExtraHot. The flavours differ in the length of tag, message block and the number of
rounds of the internal permutation. The permutation function makes use of an unkeyed 2-round
of the lightweight block cipher LED [21] as the F-function in a Type-II generalized feistel network
(GEN) [32]. This is similar to the Simpira v2 permutation framework introduced by Gueron and
Mouha [19].
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This article is organised as follows. Section 2 describes the preliminaries to understand the
subsequent sections in this article. The specification of CiliPadi is provided in Section 3. The ra-
tionale regarding the design choices of CiliPadi is explained in Section 4. Section 5 outlines the
performance of CiliPadi simulated on hardware. The security analysis of CiliPadi is detailed in
Section 6. The known strengths and weaknesses of CiliPadi are given in Section 7.

2 Preliminaries

This section introduces the notation and other preliminaries as basis to understand subsequent
sections.

2.1 Notations

The notation used in this paper is given in Table 1.

Table 1: Notation.

Description

K,N,T The secret key, nonce, and tag, respectively

X|Y The concatenation of bit strings X and ¥’

A The associated data where A = A4||... || As

M The message where M = M| ... ||M,

C The ciphertext where C' = C4|| ... ||C,||T and T is the
tag

| X The length of X in bits

S The internal state where S = S,||S., r = |S,| and
c =15

n The length of the internal state S, i.e.n = |[S| =7 +c¢

5,13 An all-zeros and all-ones binary string of x bits, re-

spectively

(X7 The first i bits (or leftmost bits) of X

(X1]l... | Xz) & X The parsing of the bit string X into 2 equally-sized
y-bit strings

A number written in typewriter font is always treated as a 4-bit hexadecimal value, i.e. 0,1,...f.
If the value is subscripted with ‘2’, as shown in Table 1 then it is treated as a 1-bit value, which
applies only for 0 and 1.

2.2 Mode of Operation

The CiliPadi[n, r, a, ] mode of operation is based on the MonkeyDuplex construction [5] and
depicted in Figure 1. It consists of four phases: initialization, associated data authentication, mes-
sage encryption/decryption, and finalization. The state length is n bits initialized with the value
of the secret key K and nonce N. The bitrate is r bits and the capacity is ¢ = n — r bits. The
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Figure 1: CiliPadi mode of operation.

permutation for the initialization and finalization phases has a rounds while the permutation for
the associated data and message encryption/decryption phases has b rounds where b > a.

3 Specification

This section formally describes the specification of CiliPadi.

3.1 Parameters

The CiliPadi[n, r, a, b] family of authentiated encryption (AE) scheme consists of configurable
parameters. For the purpose of evaluation, we propose four flavours of CiliPadi which is listed in
Table 2 according to increasing level of security. They are CiliPadi-Mild, CiliPadi-Medium, CiliPadi-
Hot and CiliPadi-ExtraHot. The lengths stated in the table are all in bits.

Table 2: CiliPadi parameters where the primary member is CiliPadi-Mild.

CiliPadi Algorithm Length of No. of rounds
[n,r,a,b Key Nonce Tag Block P2 pP?
Mild 256,64,18,16] 128 128 64 64 18 16

[ ]
Medium  [256,96,20,18] 128 128 96 96 20 18
Hot [384,96,18,16] 256 128 96 96 18 16
ExtraHot [384,128,20,18] 256 128 128 128 20 18

Formally, the CiliPadi family of AE accepts a k-bit secret key K and a 128-bitnonce N. These val-
ues become the initial value of the n-bit internal state S = K || N. The state is then updated by the
permutation P7. If the sr-bit associated data A = A4 || .. .|| A, is non-empty, it will be subsequently
processed, along with the internal state, by the associated data authentication phase. Encryption
takes the padded message M = M, ||...||M; and outputs the ciphertext C = C4||...|C; and tag
T where |M;| = |C;| = T = r bits. Decryption takes the ciphertext C' and tag 7' and outputs the
original message M if and only if C' is authentic, else it outputs L. An algorithmic description
of the components of CiliPadi is given in Figure 2, while the high-level overview is provided in
Figure 3. The descriptions are provided in the following sections.
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Proc Init(K, N) Proc AD(S, A)
1S+ K|N 1 fori=1,...,sdo
2 return S 2 | S+ PY(Sr @ A)Se)
3 end
Proc Finalization(.5) 4 8« (S.||S. @ (05711))
15+ P2(S) 5 return S
2T+ [STPo K
3 return T
Proc MEnc(S, M) Proc MDec(S, C)
1 fori=1,...,t—1do 1 fori=1,...,t—1do
2 C; < S, ® M, 2 M; < S, ® C;
3 S« P(C;|Se) 3 S« P(C;]|Se)
4 end 4 end
SCt%ST@Mt 5]\/[t<_5r@ct
6 S« (OtHSc) 6 S« (OtHSc)
7 return (S,C) 7 return (S, M)
Proc Pjs(S) Proc Pgg,(.5)
1 (X [ Xa) €= S 1 (X] [ Xe) < S
2 fori=1,...,rdo 2 fori=1,...,rdo
3 Y %Fl(Xl)EBXQ 3 Y (—Fl(Xl)EBXQ
4 Y, + X3 4 Y + X3
5 Y; (*FQ(Xg)EBX;; 5 Y; (*FQ(X5)€BX6
6 Y4 — X1 6 Y4 < X1
7 X<«Y 7 Y5« F3(X3) @ Xy
8 end 8 Ys +— X5
9 S+ X 9 XY
10 return S 10 end
1mn S+ X
Proc F} (X) 12 return S
1] flaa) ¢ X Proc LEDIr(X, RO)

2 (wnlwg) &1 I X < AC(X, RC)
3 (21]|22) & reli] 2 X « SC(X)
4 21 (03w [|02]|21]/03) 3 X « SR(X)
5 Tg < (0%”1112”02”22“0%) 4 X MCS(X)
6 w3 < (2]|02]21]|0%) 5 return X

7
8
9

4 < (3]|02][22[03)

RC « (w1 22||zs]|za)

X < LED1r(X, RC)
10 X <+ LEDI1r(X, 05%)
11 return X

Figure 2: Components of CiliPadi.
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Proc Encrypt(K, N, A, M) Proc Decrypt(K,N,A,C,T)
1 5« Init(K, N) 1 5« Init(K, N)
2 if |A| > 0 then 2 if |A| > 0 then
3 A + Pad(A) 3 | S+ AD(S,4)
4 S« AD(S, A) 4 end
5 end 5 (S, M) < MDec(S,C)
6 M « Pad(M) 6 T" + Finalization(.S)
7 (S,C) + MEnc(S, M) 7 if (T =T') then
8 T + Finalization(.9) s | return M
9 return (C,T) 9 else
10 | return L
11 end

Figure 3: High-level overview of the encryption and decryption of CiliPadi.
3.2 Initialization Phase

The n-bit state S is initialized with the value of the k-bit key followed by the 128-bit nonce N.
The internal state S is initialized as
S = K||N.

Note that the nonce must never be repeated to encrypt different messages using the same se-
cret key. The internal state can also be viewed as the concatenation of the r-bit rate S, and c-bit
capacity S, parts, i.e. S = S, ||S.. The state is then processed by the n-bit permutation P?, which
is described later. The output of this phase is fed to the associated data authentication phase, if
the associated data is non-empty.

3.3 Padding

Both the associated data and message blocks are individually padded until its entire length is a
multiple of r bits. Note that the padding is performed even though the block is already a multiple
of r bits. In such a case, an extra block is appended. Padding is performed by adding a bit 1, and
then as many zero bits as necessary until the padded data is in multiple of r bits. If the length of
the last block is ~ — 1 bits, then only bit 1 is added. Note that this padding scheme is the main
difference between CiliPadi v1.2 and v1.0, which was accepted as one of the Round 1 candidates in
the US NIST Lightweight cryptography project. In CiliPadi v1.0, padding is added individually to
the associated data and message blocks only if their lengths are not a multiple of r bits. This has
led to the length extension attack by Bagheri [1, 29]. By including padding even if the lengths of
those inputs are already a multiple of r bits, CiliPadi v1.2 is secure against such attack.

3.4 Associated Data Authentication Phase

If the associated data A = A,|| ... || A, is non-empty, then A; is XORed with the inner state S,..
The state S is then updated by the permutation P°. This process is repeated for 4; (i = 1,...,s)
until all associated data blocks are processed:

S+ P((Sr @ 4)||S).
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After the last associated data is processed, the outer state .S, is XORed with the binary string
057 !{|15 to denote the completion of the associated data phase:

S (S]ISe @ (057" [|12))-

The output of this phase is fed to either the message encryption or decryption phase, described
next.

3.5 Message Encryption Phase

There are two main inputs for this phase. The first comes from either the initialization (if the
associated data is empty) or associated data authentication phase. The second input comes from
the padded message M = M;]||...||M;. The current inner state S, is first XORed with the first
message block M; to produce the ciphertext block C;. If there are more message block available,
then this process is repeated until all message blocks are processed, except for the last block where
the permutation P is not applied:

oo IS e M8, for i=1,...,t—1,
(Sr @ M;)||Se, for i = t.

The i-th ciphertext block is extracted from the current state prior to the execution of P’ as C; =
Sy @ M;. The output of this phase is fed into the finalization phase.

3.6 Message Decryption Phase

The decryption phase is almost identical to encryption. It receives two inputs. The first is the
outcome of either the initialization or associated data authentication phase. The second input is
the ciphertext C = C||...||C;. The first ciphertext block assumes the value of S, and then the
state S is updated by P?. This process is repeated until the second last ciphertext block. The last
ciphertext block is not processed by P?.

b(C, P — _

S P2(Ci||Se), for i=1,...,t—1,
CillSe, for i =t.

The corresponding message block is only released when the tag is verified, i.e. only after succesful

execution of the finalization phase. The i-th message block is extracted from the current state prior
to the execution of the permutation Pbie M; =S, @ C;.

3.7 Finalization Phase

This phase updates the internal state S to output a single r-bit tag. After the state has been
processed by P2, S, is XORed with the first r bits of the key K. The tag T is the result of this XOR
as follows.

S« Pr(5:[1Se),

T+ S &[K]|".
When decrypting ciphertext, the original message A will only be released if the computed tag
above matches the one supplied by the sending party.
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Figure 4: Type-II GEN employed in CiliPadi for d = 4 and d = 6.

3.8 The Permutation Function P

The permutation function P makes use of an unkeyed 2-round' of the lightweight block cipher
LED [21] as the round- and line- dependent F-function in a Type-II generalized feistel network
(GEN) [32]. We refer a Type-II GEN that accepts d input sub-blocks as a d-line Type-II GEN. For
CiliPadi, d is an even number and each line is of length n/d bits. There are d/2 F' functions in each
round that accepts input from odd-numbered lines. Let X, || ... || X4 denote the input lines. They
are updated by the F-function in the i-th round as follows.

X]’<—Xj fOI'j:L?),...,d—L

Xj— X; @ F}5(X;1) for j=2,4,...,d.
After the above transformations, the lines are shuffled by the permutation function 7 before being
used as input to the next round. For instance, the shuffle 7 = {2, 3,4, 1} means that the first input
line is mapped to the second output line, the second input line to the third output line, and so

forth. The same shuffle 7 is used in both the message encryption and decryption phases. For
CiliPadi, the shuffling” used are given in Table 3 and depicted in Figure 4 for d = 4 and d = 6.

Table 3: Shuffling used in the Type-II GEN.

Input length  Number of Shuffle
n (in bits) lines d T
128 2 (2,1}
256 4 {4,1,2,3}
384 6 {4,1,2,5,6,3)
512 8 {4,1,2,5,8,3,6,7}

I This refers to a full 2 rounds where no operation is omitted in the last (second) round.
2Note that in [28], the index starts with 0, ours start with 1.
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L1 T2 | T3 | Tq T1 T2 | T3 | T4 Ty fr2 | T3 | T4 Ty fr2 |23
AC sSC SR MCS

5T |Tr7 T8 5T Tr7 | T8 Texr7 T8 Ts5 T |T7 T8

Z9 IT10§T11fr12] Z9 fr1ofr11jri2| [T11T12] T9 fr10 [C11T12] 9

13T 14|T15)T16 13|L14)T 15T 16| [C16§C13fT14fT15 16§T13fT14

Figure 5: A single round of LED.

3.9 The F function

As mentioned earlier, the round- and line- dependent F' function is an unkeyed 2-round of the
LED [21] block cipher where no operation is omitted in the last (i.e. second) LED round. A single
LED round® consists of the following four operations, depicted in Figure 5, applied in sequence to
the 64-bit input: AddConstants, SubCells, ShiftRows and MixColumnsSerial. The input to LED is
64 bits partitioned into 16 4-bit cells. Let z = z1]| ... ||z16 denote this input which can be depicted
as a 4 x 4 matrix which is entered row-wise as follows.

Ty T2 T3 X4
rs T T7 @ Xg
9 Ti0 Ti1 T12
13 Ti4 Ti15 Ti6

In AES, the input is entered column-wise.

3.9.1 AddConstants (AC)

Initialize a 6-bit round constant rc; || . .. ||rcg set to all zeros. In each round of the permutation,
the constant is updated by shifting its value 1 bit to the left. The new value for r¢g is taken as
rey ®ree ® 1. We also add the F-function number encoded as a 4-bit value I = [1]| . .. ||l4 as one of
the parameters in the constant value. This is to ensure that every F-function has different constant

value.
Li||la  rer||re||res

I3l|ly  reql|res||res
2 rep||res||res
3 req||res|lres 00

o O O
o O O

The above matrix is XORed to the current value of the state in the first round of LED in the F-
function. The constants for the second round of LED are set to all-zeros. The complete values of
the round constants are given in Table 4.

Table 4: The values for the second column of the round constant state matrix used in the first LED-round of all F-functions. The round
constants for the second LED-round are set to all-zeros. The first column of the round constant matrix is (0, 1, 2, 3) for Fy , (0,2, 2, 3) for

Fg, and (0, 3, 2, 3) for Fg

Rnd. Value Rnd. Value Rnd. Value Rnd. Value

1 (0,1,0,1) 6 (7,6,7,6) 11 (3,6,3,6) 16 (1,6,1,6)
2 (0,3,0,3) 7 (7,577,5) 12 (7,4,7,4) 17 (3,5,3,5)
3 (0,7,0,7) 8 (7,3,7,3) 13 (7,1,7,1) 18 (7,2,7,2)
4 (1,7,1,7 9 (6,7,6,7) 14 (6,3,6,3) 19 (6,5,6,5)
5 (3,7,3,7) 10 (5,7,5,7) 15 (4,7,4,7) 20 (5,3,5,3)

3We are not referring to v2 of LED.
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3.9.2 SubCells (SC)

This operation substitutes the current value of each 4-bit cell with another 4-bit value, using
the s-box of Present [9] given in Table 5.

Table 5: The s-box S of Present used in LED.

3.9.3 ShiftRows (SR)

This operation rotates the second, third and fourth row of the state matrix by one, two and
three cells to the left.

3.9.4 MixColumnsSerial (MCS)

This operation multiplies the current value of the state with the following 4 x 4 matrix.

N T 00
N DO O~
Hoo 01N
T O N

The result of the multiplication is the new value of the state.

4 Design Rationale

This section outlines the rationale for the design choices made for CiliPadi.

4.1 Key Lengths

We recommend two different key lengths, i.e. 128 and 256 bits. The former is meant for ap-
plications where resources such as area are very limited. The latter is proposed for applications
where performance can be slightly sacrificed to gain more security.

4.2 Sponge

Our construction is based on the MonkeyDuplex [5] Sponge, which evolves from the original
Sponge proposed in 2007 [7]. The versatile construction has been extensively scrutinized and
deployed in numerous hash functions and AE proposals. These include Keccak [4] (standardized

10
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in SHA-3 and ISO/IEC 10118-3), PHOTON [20] (ISO/IEC 29192-5) and one of CAESAR'’s* final
portfolio Ascon [16]. In particular, our use of different numbers of rounds in the initialization,
message processing and finalization phases resembles that of Ascon and Fipes [8].

4.3 Permutation

The permutation function makes use of an unkeyed 2-round of the lightweight block cipher
LED [21] as the F-function in a Type-II generalized feistel network (GFN) [32]. This is similar
to the Simpira v2 permutation framework introduced by Gueron and Mouha [19]. To maximize
diffusion, Simpira v2 utilizes a shuffling introduced by Suzaki and Minematsu [28], instead of
the traditional left or right rotation of the input sub-blocks. The optimized shuffling allows us to
achieve faster full diffusion of the input sub-blocks compared to the conventional Type-II GEN. A
full diffusion means that all output sub-blocks are affected by all input sub-blocks.

Note that Simpira v2 was originally designed to utilize native AES instructions such as Intel’s
AES-NI present in many modern processors. The aim is to achieve a high throughput implemen-
tation. As there is no hardware-specific instructions for LED, this is not our ultimate aim. We chose
to follow Simpira v2 due to its flexibility in extending to larger input lengths and also because it
is easy to analyze its security with respect to differential and linear cryptanalysis.

By employing a Type-II GEN, it is trivial to extend the input lengths in multiple of 128 bits. The
use of 2-round LED as the F-function allows us to borrow the security analysis done on Simpira
v2, which utililizes 2-round AES instead.

The LED block cipher is chosen due to its lightweight construction and its similarity to the AES.
In contrast to a 1-round LED that has a minimum of one active s-box, a 2-round LED has a minimum
of 5 active s-boxes, which is identical to the AES [14]. This allows us to easily extend the results
of Gueron and Mouha [19], whom originally use AES in the Simpira v2 framework, to CiliPadi.

The number of rounds for P!, i.e. b = 16, is one round extra than the suggested number of
rounds for Simpira v2 (i.e. 15) for d = 4 and d = 6. Furthermore, P2 is two rounds more than P?,
which should provide ample protection against tag forgery in the finalization phase.

5 Performance Analysis

We implemented and simulated CiliPadi-Mild using VHDL on Xilinx ISE and synthesized on
xc6vIx760-2£f1760 FPGA chip inside the Virtex 6 development board. We use RTL approach and
make use of an iterative type design. The other flavours of CiliPadi are obtained from our estimate
based on the implementation of Mild. Table 6 shows a comparison of our implementation with
other similarly designed AEs, i.e. Beetle [11] and Ascon [16]. These schemes are chosen due to
the use of a sponge-based construction. Furthermore, the latter uses different number of rounds
for the initialization and message encryption phases, which is similar to our design. The results
for Ascon are obtained from Athena’s database [17].

4Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)

11
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Table 6: Comparison of FPGA implementation of CiliPadi against other similar designs on Virtex 6. Results for Beetle and Ascon are taken
from existing literature.

Scheme LUTs Slices Freq. Gbps Mbps/ Mbps/

(MHz) LUT  Slice
Beetle[Light+] 616 252 381.592 1.879 3.050 7.369
Beetle[Secure+] 998 434 256 2520 2.525 5.806
Ascon-128 1274 451 341.1 3.118 2447 6914
Ascon-128a 1587 547 358.6 5.099 3213 9.322
CiliPadi-Mild 1052 303 639.959 1.138 1.082 3.756
CiliPadi-Medium 747 363 620 1.353 1.8112 3.727
CiliPadi-Hot 1268 373 631 1.685 1.329 4517

CiliPadi-ExtraHot 1332 392 605 1760 1.321 4.490

Beetle[Light+] and Beetle[Secure+] respectively use a 144-bit key (with 64 bits of security) and
256-bit key (with 121-bit security). On the other hand, both variants of Ascon employ a 128-bit
key. The main differences between Ascon-128 and Ascon-128a are the message block size and
numbers of permutation rounds. The former accepts a 64-bit block size while the latter, 128 bits.

The execution of CiliPadi-Mild and CiliPadi-Hot producing one ciphertext block and tag is 72
clock cycles. For CiliPadi-Medium and CiliPadi-ExtraHot, the number of clock cycles is 88. The
primary member of CiliPadi, i.e. Mild, occupies 303 slices, which is about 20% higher than Bee-
tle[Light+] but lower than other AEs compared in Table 6. However, our scheme provides 128-bit
security as compared to Beetle[Light+]’s 64-bit. In the 256-bit key space, the two flavours of Cili-
Padi, i.e. Hot and ExtraHot consume fewer numbers of slices compared to Beetle[Secure+]. They
even surpassed both variants of the 128-bit key Ascon. The numbers of slices for both Hot and
ExtraHot flavours of CiilPadi are below 400 whereas the other compared AEs exceed this number.
We believe that the implementation of CiliPadi can be further improved.

6 Security Analysis

6.1 Differential Cryptanalysis

In this section, we analyze the security of CiliPadi against differential cryptanalysis both theo-
retically and experimentally. We then extend some of these findings to linear cryptanalysis. Note
that although there is no LED round subkeys to recover, such analysis is still useful since our anal-
ysis falls in the known-key attack model [24]. In our case, the known-key is the round constants.

6.1.1 Preliminaries

P is based on the Simpira v2 framework which is a d-line Type-II GFN. Instead of using AES
like Simpira, CiliPadi uses an unkeyed 2-round LED as its round function, . The design of LED
shares same diffusion properties as AES, thus 2 rounds of LED has 5 active s-boxes (AS) [14]. In
other words, F" has a minimum of 5 active s-boxes given a non-zero input. The maximum dif-
ferential probability of its s-box (which is essentially PRESENT’s s-box [9]) is 272. We evaluate
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CiliPadi using two approaches, the first of which is based on the notions of P as a random permu-
tation and the second is based on identifying collision-producing differentials. An upper bound
of the differential probability for both approaches will be defined based on the number of “active
F-functions". We first provide some brief definitions for these concepts:

P as a random permutation: It has been shown that the security of sponge and duplex construc-
tions rely on their underlying permutations being random [6, 5]. To evaluate P as a random
permutation, we take into consideration the entire internal state, S as a whole. The maximum
differential probability for P must be 27256 and 273%* for internal states of n = 256 and n = 384
respectively, to demonstrate some semblance to a random permutation. To obtain a differential
path for the entire state S, a related-key/related nonce differential attack can be applied on the ini-
tialization phase, whereby an adversary is allowed to inject differences in either the key or nonce

(or both of them). We can then define a differential path as AX 2, AY, where p is probability
that an input difference AX leads to an output difference AY. We refer to p as the differential
probability. AX and AY are defined as

AX = (K1 © K3)||[(N1 @ Na),
and
AY = P(K,|Ny) & P2 (K| Ny),

respectively.

Thus, if AX 2 AY holds with p > 27", P is susceptible to a trivial distinguishing attack:

i. Initialize a counter, ¢ = 0.

ii. Generate 2" related-key/related-nonce pairs corresponding to AX.
iii. Encrypt each key-nonce pair to obtain the corresponding output difference.
iv. For each key-nonce pair that fulfills, AX — AY, increment c.

v. Statistically, the distinguishing attack is successful if ¢ ~ 2°.

Note that computing the differential path requires that random subkeys be used for each round
of the underlying LED cipher to make the s-box inputs independent. These subkeys can be simu-
lated by the addition of round constants.We also note that exhaustively searching through a state
space of 256 or 384 bits exceeds today’s computing capability. Therefore, these results are only of
academic interest.

Collision-producing differential: In the AD authentication and message encryption phases, a
straightforward application of differential cryptanalysis is difficult because the initial capacity
state S, is unknown to an adversary. However, we can investigate collision-producing differentials
for CiliPadi which are differentials that have differences in S, for both the input and outputs of P,
but have zero differences for S.. Such differentials may be useful in forgery attacks. A collision-
producing differential can be defined as

AXj0g & AY|los, (1)
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where AX can be introduced by injecting a difference in the message block, AY ||0¢ = P(AX||05),
and p is the probability that the differential holds.

Active F-function analysis: To theoretically estimate the upper bounds of the differential prob-
ability, we use the notion of “active F-functions” (AF). An F-function is considered to be active
when it receives a non-zero input, similar to the concept of AS. We have implemented a search-
ing algorithm to compute the number of AF for each round which is equivalent to identifying
the number of AS for a regular GEN. The algorithm is based on a modified version of Matsui’s
branch-and-bound search proposed in [12].

To simplify explanations, we will use the concept of truncated differentials, whereby every 64
bits of the concrete difference is represented as 1 bit in the truncated difference. A non-zero 64-bit
block results in a non-zero truncated bit, and vice versa. E.g. for d = 4, if a concrete difference con-
sists of four 64-bit differences, AX = (053/12)(|(053]|12)]|(05*)]|(05*), the corresponding truncated
difference is AX” = (1100). Thus, the maximum Hamming weight of the truncated difference
is equal to d. The odd numbered bits (1,3,6) of the truncated difference will pass through the
F-function, thus "activating" it.

Using the searching algorithm, we identify the number of AF for d = 4 and d = 6 for up to 30
rounds as shown in Tables 7 and 8 respectively. In the following sections, we use this methodology
to first evaluate P as a random permutation before examining its security against the distinguish-
ing attack.

Table 7: Active F-function distribution for CiliPadi-Mild/Medium (d = 4).

Round 1 2 3 4 5 6 7 8 9 10

AF o 1 2 3 4 6 6 8 10 11
Round 11 12 13 14 15 16 17 18 19 20
AF 12 12 12 13 14 15 16 18 18 19

Round 21 22 23 24 25 26 27 28 29 30
AF 20 21 22 24 24 25 26 27 28 30

Table 8: Active F-function distribution for CiliPadi-Hot/ExtraHot (d = 6).

Round 1 2 3 4 5 6 7 8 9 10

AF o 1 2 3 4 6 8 10 11 12
Round 11 12 13 14 15 16 17 18 19 20
AF 13 14 15 17 19 21 22 23 24 25

Round 21 22 23 24 25 26 27 28 29 30
AF 26 28 30 32 33 34 3 36 37 39

6.1.2 P as a Random Permutation

For P to approximate a random permutation, the differential probability should be at most
27256 (27384) for d = 4 (d = 6). As the differential probability of the s-box is 272, this requires at
least 230 = 128 (281 = 192) AS. A conservative approach is to assume each AF to contain only 5
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AS as was the assumption made for a Type-II GEN that has 2 substitution layers interleaved with a
single maximum distance separable (MDS)-based diffusion layer [10] (same as our 2-round LED
with the exception that ours have an extra diffusion layer). Based on this approach, therefore,
256 ~ 26 (5% ~ 39) AF is required in order for P to resist differential cryptanalysis. Indeed, 26
(39) AF gives 26 x 5 = 130 (39 x 5 = 195) AS. Based on this rough estimate, according to Table 7
(8), P needs to have at least 27 (30) rounds for d = 4 (d = 6) to avoid any biases from a random

permutation.

However, since P makes use of LED, which inherits the wide trails strategy of the AES, we can
improve the previous analysis. As illustrated in Figure 6 and proven by the designers of AES,
any 4-round differential path provides a minimum of 25 active s-boxes. Suppose that a particular
round in LED has one AF where the internal differential paths looks like the first 2 rounds of the
4-round path depicted in the figure. We can observe that MCS causes all 4-bit cells to have nonzero
output difference. Then, these 16 nonzero differences become the input to the next subsequent
F-function which activate 16 AS in the first LED round and another 4 AS in the second LED round.
It is therefore not possible for this second AF to have 5 AS as assumed before. Due to the wide trail
strategy, this second AF is guaranteed to contain 20 AS. The AS patternis1 -4 — 16 -4 — 1.

1AS
AC
SR MCS
Round sSC
1
4 AS
AC
SR MCS
Round SC
2
16 AS
AC
SR MCS
Round SC
3
4 AS
AC
SR MCS
Round sC
4

Figure 6: A 4-round differential path for LED that guarantees at least 25 active s-boxes (AS)

Table 9 expands the AF distribution given in Tables 7 and 8 by showing examples of truncated
differential paths for Py for all flavours of CiliPadi. As given earlier in this section, for d = 4, 128
AS are required in order for P to be resistant to differential cryptanalysis. For d = 6, the number
of AS is 192. Based on Table 9, the truncated differential path for P}5; and P} each contains a
minimum of 180 and 185 AS, respectively. On the other hand, the path for P;$, and P3), each com-
prises 265 and 290 AS, respectively. These numbers for CiliPadi are beyond the required number of
AS. The upper bounds of the differential probability p,, of Py for all variants of CiliPadi are shown
in Table 10. For each variant, we also provide the number of truncated paths that correspond to
the number of AF. Note that a 6-round iterative truncated differential with 6 AF (0001 — 0001),
and a 16-round iterative truncated differential with 22 AF (000001 — 000001) exists for d = 4 and
d = 6 respectively.
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Table 9: Numbers of AF and AS for truncated differential paths for Py .

Mild (P18)  Medium (P%,)  Hot (P8, ExtraHot (P20,
Rnd. AX AFAS AX AF AS AX AFAS AX AF AS
1 0001 0 0 0001 O O 000001 O O 000011 1 5
2 0010 1 5 0010 1 5 001000 1 5 000001 O O
3 0110 1 20 0110 1 20 010010 1 20 001000 1 5
4 1110 2 10 1110 2 10 101001 2 10 010010 1 20
5 0111 1 20 0111 1 20 111110 3 60 101001 2 10
6 1100 1 5 1100 1 5 011111 2 10 111110 3 60
7 0001 0 0 0001 0 O 110001 1 20 011111 2 10
8 0010 1 5 0010 1 5 001100 1 5 110001 1 20
9 0110 1 20 0110 1 20 010000 0O O 001100 1 5
10 1110 2 10 1110 2 10 100000 1 5 010000 0 O
11 0111 1 20 0111 1 20 100100 1 20 100000 1 5
12 1100 1 5 1100 1 5 100110 2 10 100100 1 20
130001 0 O 0001 0 O 101111 3 60 100110 2 10
14 0010 1 5 0010 1 5 110111 2 10 101111 3 60
15 0110 1 20 0110 1 20 000111 1 20 110111 2 10
16 1110 2 10 1110 2 10 000011 1 5 000111 1 20
17 0111 1 20 0111 1 20 000001 0 O 000011 1 5
18 1100 1 5 1100 1 5 001000 1 5 000001 0 O
19 0001 0 0 001000 1 5
20 0010 1 5 010010 1 20

Table 10: Differential probability upper bounds for P

CiliPadi- n a AF AS Pu Truncated Paths

Mild 256 18 18 180 27360 122
Medium 256 20 19 185 27370 10
Hot 384 18 23 265 27°%0 144
ExtraHot 384 20 25 290 27580 36

Practical Confirmation: We now experimentally confirm that our “active F-function" estimation
is a conservative lower bound, and that the actual number of AS per AF would be higher than 5
as the number of rounds increases. In other words, the number of AF provides us with an upper
bound in terms of differential probability. To perform the differential search, we leverage upon
the methodology described in [13]. Here, we focus on only the CiliPadi-Mild as a proof-of-concept
and use the truncated differential path shown in Table 9 as a guide. We limit our input difference
to have a hamming weight of 1 (only 1 bit out of any 64-bit word will be active at one time). Due
to computational limitations, we bound the search based on each round of LED as:

o LED Round 1: Based on the input difference, if the number of activated s-boxes is more than
8, we limit the number of branches to 2 for each s-box, whereby we select the two branches
with the highest differential probability. Otherwise, we search all branches.

e LED Round 2: Based on the input difference, if the number of activated s-boxes is more than
4, we limit the number of branches to 1 for each s-box, whereby we select the branch with
the highest differential probability. Otherwise, we search all branches.
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Based on this methodology, we found a 4-round concrete path following the truncated differential
path 0001 — 0111 with a probability of 270:

AX = 05*]05"|05* ] (03%]|2]|03?),

AY = 05" 7£462a6de679866ce||8F01218a4117896¢ ||(02%(|2]|052),

where AY is post-shuffle. The breakdown of the concrete differential path, the number of AS
per round, and the comparison to our lower bound AS;, is shown in Table 11. In the second
round, there are 5 AF which leads to a probability of (272)5 = 271, verifying the correctness
of our implementation. However, although the third round has only 1 AF, the actual number of
AS is 28 due to the strong diffusion capability of LED. It confirms our claim that the number of
“active F'-functions” can be used as a conservative estimate of the security margin, and will lead
to a conservative lower bound in terms of security margin (and equivalently, an upper-bound in
terms of differential probability).

Table 11: Example of a concrete differential path for Pgy .

Concrete Differential AS AS;

0g! 0g! of (0320 0 0
064 064 (028H2||032) 034 5 5
o64 (028||2\|032) c25adcad9fdb44bl (o 28 20
(028||2\|032) c25adcad9fdb44bl 7f46a6de679866ce 0§* 36 10

054 7£46a6de679866ce 8£01218a4117896f (03°%(/2)032) - -

6.1.3 Collision-Producing Differentials of CiliPadi

The number of AF for a collision-producing truncated differential for CiliPadi-Mild and CiliPadi-
ExtraHot can be identified by fixing both the input and output truncated differences to “1000" and
“110000" respectively (i.e. 1000 — 1000 and 110000 — 110000 because r is a multiple of 64.
For ease of analysis, we use 1000 — 1000 as the truncated differential for CiliPadi-Medium, by
setting the remaining 96 — 64 = 32 bits of the bitrate part to nonzero. For CiliPadi-Hot, we use
100000 — 100000. We then employ the same searching algorithm to identify the truncated differ-
ential path with the lowest number of AF for P?. The results are summarized in Table 12 where
Peot denotes the probability of the collision-inducing path. The truncated paths corresponding
to each of CiliPadi’s variants are as shown in Table 13. Note that a 6-round iterative truncated
collision-producing differential exists for d = 4, where 1000 — 1000 with 6 AF.

Table 12: Collision-producing differential probability upper bounds for P?.

CiliPadi- n b AF AS  Dea

Mild 256 16 18 180 27360
Medium 256 18 18 180 27360
Hot 384 16 22 260 27°%0

ExtraHot 384 18 26 310 27620
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Table 13: Numbers of AF and AS for truncated collusion-producing differential paths for P?.

Mild (Psds Medium (P2 Hot (P38, ExtraHot (P38,
Rnd. AX AF AS AX AF AS AX AF AS AX AF AS
1 1000 1 5 1000 1 5 100000 1 5 110000 1 5
2 1001 1 20 1001 1 20 100100 1 20 000100 O O
3 1011 2 10 1011 1 10 100110 2 10 000010 1 5
4 1101 1 20 1100 2 20 101111 3 60 001001 1 20
5 0011 1 5 0011 1 5 110111 2 10 011010 2 10
6 0100 0 0O 0100 O O 000111 1 20 111011 3 60
7 1000 1 5 1000 1 5 000011 1 5 010111 1 5
8 1001 1 20 1001 1 5 000001 0 O 101011 3 60
9 1011 2 10 1011 2 10 001000 1 5 110111 2 10
10 1101 1 20 1101 2 5 010000 1 20 000111 1 20
11 1011 2 10 0011 1 5 100000 2 10 000011 1 5
12 1101 1 20 0100 0 O 100100 3 60 000001 0 O
13 1011 2 10 1000 1 5 100110 2 10 001000 1 5
14 1101 1 20 1001 1 20 101111 1 20 010010 1 20
15 oo11r 1 5 1011 2 10 110101 1 5 101001 2 10
16 0100 0 O 1101 2 20 001110 O O 111110 3 45
17 0011 1 5 111101 2 10
18 0100 0 O 011100 1 20

Practical Confirmation: We now experimentally confirm that the collision probabilities in Table 12
provides conservative lower bounds. Again, we target CiliPadi-Mild as a proof-of-concept and use
the truncated differential path shown in Table 13 as a guide. Based on the same methodology
described in Section 6.1.2, we found a 3-round concrete path following the truncated differential
path with a probability of 27140

AX = (03%][2[|03%) |05 03" |05,

AY = 8£01218a4117896f(03°||2]|052)05* || 7£4626de679866ce,

where AY is post-shuffle. The above differential path contains a total of 69 AS, which is signif-
icantly higher than the theoretical lower bound of 35 AS for a 3-round differential, as shown in
Table 13.

6.1.4 Practical Security Bounds

In practice, the best cryptanalytic attack requires less computational complexity than an ex-
haustive search of the secret key. CiliPadi has key sizes of 128 and 256 bits, thus any statistical
distinguisher for a successful attack must have a probability higher than 2728 and 2725¢ respec-
tively. Based on Tables 10 and 12, the theoretical upper bounds of the differential probability
indicate that all flavours of CiliPadi are highly resistant to differential cryptanalysis and collision
attacks. In reality, the differential probabilities are much lower as depicted in the practical confir-
mation experiments. Therefore, CiliPadi is expected to thwart any differential type attacks.
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6.2 Full Bit Diffusion

With the availability of the full AF distribution, we can determine the minimum number of
rounds for P to achieve full bit diffusion. Here, the findings from Simpira v2 are directly applicable
because the underlying round functions for both Simpira and CiliPadi have the same diffusion
properties. For d = 4, full bit diffusion is achieved after 4d — 6 = 16 — 6 = 10 F-functions [19].
Based on Table 7, 9 rounds of P is sufficient for full bit diffusion. As for d = 6, full bit diffusion is
achieved after 5 rounds [28]. Thus, the current number of rounds of P for all variants of CiliPadi
are sufficient to achieve full bit diffusion.

6.3 Extension to Linear Cryptanalysis

The previous findings on differential cryptanalysis can be trivially extended to linear crypt-
analysis due to the duality between linear and differential cryptanalysis [25, 10], and also due to
PRESENT's s-box having a linear probability of 272. Thus, all the results in the previous subsec-
tions are applicable to linear cryptanalysis.

7 Strengths and Weaknesses

The following list the expected strengths and weaknesses of CiliPadi.

7.1 Strengths
CiliPadi has the following advantages:

e It is trivial to expand the length of the permutation in multiple of 128 bits due to the use of
a Type-II GFN.

o The bitrate can be adjusted to allow different plaintext and tag lengths.

o The design is based on the sponge construction, which have been extensively analyzed and
employed in SHA-3 and one of the CAESAR portfolio Ascon.

e Any AES-like block cipher or permutation can be adopted in the F-function to replace the
LED block cipher, if desired.

7.2 Weaknesses
The known limitations of CiliPadi are:

o The processing of the message and ciphertext blocks cannot be parallelized because due to
the sequential processing of the input blocks.
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e The permutation can only be expanded in multiple of 128 bits. Extending with a smaller
granularity, e.g. 32 bits, is not supported. This can be addressed by using a smaller block
cipher as the F-function such as KATAN and KTANTAN [15].
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8 Appendices

The following are the test vectors for the recommended flavours of CiliPadi.
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Table 14: CiliPadi test vectors.

128-bit Key

Key 000102030405060708090a0b0c0d0e0f

Nonce 000102030405060708090a0b0c0d0e0f

AD 000102030405060708090a0b0c0d0e0f

Plaintext 000102030405060708090a0b0c0d0e0f

CiliPadi-Mild

Ciphertext 3fb9e70d3702c712d407£60£617e43d3

Tag 68b96217dd237301

CiliPadi-Medium

Cﬁpheﬁext e121ea7£f97d9ba3c93f8e0fe7bd3b247

Thg d8c081563c28aa673557beac

256-bit Key

Key 000102030405060708090a0b0c0d0e0f
101112131415161718191alblcidielf

Nonce 000102030405060708090a0b0c0d0e0f

AD 000102030405060708090a0b0c0d0e0f

101112131415161718191alblcldlelf
Plaintext 000102030405060708090a0b0c0d0e0f
101112131415161718191alblcidlelf

CiliPadi-Hot

Ciphertext 5dca237e5d333998aaabafal37faeeall
6763b68822e11d8370a073182677eadd

Tag 8002b646e2d8ab51eab4c40b

CiliPadi-ExtraHot

Cﬁpheﬂext 54c5f1bbca2e440£f9db6fcd4cOdfe2c72
57371d685219fbf19a3ea3f6aedc81c3

Tég aa00ba04115£d£838242b021e80de375
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